Operating Manual

DM221 / DM222 Converter for DMS full bridge sensors

Product features:

- DM222: Connection for two independent DMS full bridge sensors
- DM221: Connection for one independent DMS full bridge sensor
- DM222: Two independent analog current/voltage outputs
- DM221: One independent analog current/voltage output
- Four HTL inputs for triggering different states
- Four HTL outputs for displaying different states
- Transmission of sensor data by RS-485
- Programming by USB
- Supply 18 to 30 VDC

Die deutsche Beschreibung ist verfügbar unter: https://www.motrona.com/fileadmin/files/bedienungsanleitungen/Dm222_d.pdf

The English description is available at: https://www.motrona.com/fileadmin/files/bedienungsanleitungen/Dm222_e.pdf

La description en français est disponible sur: https://www.motrona.com/fileadmin/files/bedienungsanleitungen/Dm222_f.pdf

The operator software OS (freeware) is available at: https://www.motrona.com/en/support/software.html

Version:	Description:
DM220_01a/AF/MB0/ May 2022	First version / edition
DM222_01b/mbo/Feb. 2023	Chapter 4/connection diagram updated

Disclaimer:

All contents included in this manual are protected by the terms of use and copyrights of motrona GmbH. Any reproduction, modification, usage or publication in other electronic and printed media as well as in the internet requires prior written authorization by motrona GmbH.

Table of content

1.	Safety Instructions and Responsibility	5
	 General Safety Instructions Use according to the intended purpose Installation EMC Guidelines Cleaning, Maintenance and Service Notes 	
2.	Introduction	8
3.	Block diagram for DM222	8
4.	Electrical Connections DM222	9
	 4.1. DC Input Voltage Supply at X1 4.2. DMS Full Bridge Supply at X3, X4 4.3. DMS Full Bridge Readback at X3, X4 4.4. DMS Full Bridge Voltage at X3, X4 4.5. Example of Connection DMS Sensor 4.6. Control Outputs OUTx at X6 4.7. Control Inputs INx at X6 4.8. Analog Outputs at X5 4.9. LEDs 4.10. USB 4.11. RS-485 at X2 4.12. DIL 	10 10 10 10 10 10 11 11 11 11 12 12 12
5.	Parameter	13
	 5.1. Sensor 1 Menu 5.2. Sensor 2 Menu (only for DM222) 5.3. Combination Menu 5.4. Digital Input Menu 5.5. Analog Output 1 Menu 5.6. Analog Output 2 Menu (only DM222) 5.7. Digital Output Menu 5.8. Modbus Menu 5.9. Serial Menu 5.10. General Menu 5.11. Adjustment Menu 	15 15 16 17 18 18 20 21 21 22 23
6.	Commissioning	25
	 6.1. Basic Setting of the DMS Sensor 6.2. Simplest Setting 6.3. Conversion to Sensor Units 6.4. Combined Sensors 6.5. Digital Input 6.6. Analog Output 6.7. Digital Output 6.8. Additional Optional Settings 6.8.1. Examination of the Read Analog Values 6.8.2. Setting of the RS-485 Serial Interface 6.9. Calibration of Analog Output 	25 27 27 28 28 28 29 29 29
	6.9. Calibration of Analog Output	

	6.10. Calibration of MEA Readback	29
	6.11. Calibration of Analog Input BRI / DMS	30
	6.11.1. Calibration of Input Stage	
	6.11.2. Calibration of Input Stage and of DMS Sensor	
	6.11.3. Monitor Codes for Calibration	
7.	Input Functions	32
	7.1. Tara 1	32
	7.2. Tara 2	
	7.3. Tara 12	32
	7.4. Lock 1	33
	7.5. Lock 2	33
	7.6. Lock 3	33
	7.7. Lock 4	
	7.8. Lock 1-4	
	7.9. Set 1	
	7.10. Set 2	
	7.11. Set 12	35
8.	Output Functions	35
	8.1. Output Function = 1	35
	8.2. Output Function = 2	
	8.3. Output Function = 3	36
	8.4. Output Function = 4	
	8.5. Output Function = 5	
	8.6. Output Function = 6	
	8.7. Output Function = 7	36
9.	Lecom Protocol	37
	9.1. Lecom Read	
	9.2. Lecom Write	38
10.	Modbus Protokoll	39
	10.1. Modbus Read	39
	10.2. Modbus Write	40
11.	Modbus CRC Calculation	43
12.	Parameter-List	44
13.	Dimensions	47
14.	Technical Specifications	48

1. Safety Instructions and Responsibility

1.1. General Safety Instructions

This operation manual is a significant component of the unit and includes important rules and hints about the installation, function and usage. Non-observance can result in damage and/or impairment of the functions to the unit or the machine or even in injury to persons using the equipment!

Please read the following instructions carefully before operating the unit and <u>observe all safety and</u> <u>warning instructions!</u> Keep the manual for later use.

A pertinent qualification of the respective staff is a fundamental requirement in order to use this manual. The unit must be installed, connected and put into operation by a qualified electrician.

Liability exclusion: The manufacturer is not liable for personal injury and/or damage to property and for consequential damage, due to incorrect handling, installation and operation. Further claims, due to errors in the operation manual as well as misinterpretations are excluded from liability.

In addition, the manufacturer reserves the right to modify the hardware, software or operation manual at any time and without prior notice. Therefore, there might be minor differences between the unit and the descriptions in operation manual.

The raiser respectively positioner is exclusively responsible for the safety of the system and equipment where the unit will be integrated.

During installation or maintenance all general and also all country- and application-specific safety rules and standards must be observed.

If the unit is used in processes, where a failure or faulty operation could damage the system or injure persons, appropriate precautions to avoid such consequences must be taken

1.2. Use according to the intended purpose

The unit is intended exclusively for use in industrial machines, constructions and systems. Nonconforming usage does not correspond to the provisions and lies within the sole responsibility of the user. The manufacturer is not liable for damages which has arisen through unsuitable and improper use.

Please note that unit may only be installed in proper form and used in a technically perfect condition (in accordance to the Technical Specifications, see chapter <u>14</u>). The unit is not suitable for operation in explosion-proof areas or areas which are excluded by the EN 61010-1 standard..

1.3. Installation

The unit is only allowed to be installed and operated within the permissible temperature range. Please ensure an adequate ventilation and avoid all direct contact between the unit and hot or aggressive gases and liquids.

Before installation or maintenance, the unit must be disconnected from all voltage-sources. Further it must be ensured that no danger can arise by touching the disconnected voltage-sources.

Units which are supplied by AC-voltages, must be connected exclusively by switches, respectively circuit-breakers with the low voltage network. The switch or circuit-breaker must be placed as near as possible to the unit and further indicated as separator.

Incoming as well as outgoing wires and wires for extra low voltages (ELV) must be separated from dangerous electrical cables (SELV circuits) by using a double resp. increased isolation.

All selected wires and isolations must be conformed to the provided voltage- and temperature-ranges. Further all country- and application-specific standards, which are relevant for structure, form and quality of the wires, must be ensured. Indications about the permissible wire cross-sections for wiring are described in the Technical Specifications (see chapter <u>14</u>).

Before first start-up it must be ensured that all connections and wires are firmly seated and secured in the screw terminals. All (inclusively unused) terminals must be fastened by turning the relevant screws clockwise up to the stop.

Overvoltages at the connections must be limited to values in accordance to the overvoltage category II.

1.4. EMC Guidelines

All motrona units are designed to provide high protection against electromagnetic interference. Nevertheless, you must minimize the influence of electromagnetic noise to the unit and all connected cables.

Therefore, the following measures are mandatory for a successful installation and operation:

- Use shielded cables for all signal and control input and output lines.
- Cables for digital controls (digital I/O, relay outputs) must not exceed a length of 30 m and are allowed for in building operation only
- Use shield connection clamps to connect the cable shields properly to earth
- The wiring of the common ground lines must be star-shaped and common ground must be connected to earth at only one single point
- The unit should be mounted in a metal enclosure with sufficient distance to sources of electromagnetic noise.
- Run signal and control cables apart from power lines and other cables emitting electromagnetic noise.

Please also refer to motrona manual "General Rules for Cabling, Grounding, Cabinet Assembly". You can download that manual by the link

https://www.motrona.com/en/support/general-certificates.html

1.5. Cleaning, Maintenance and Service Notes

To clean the front of the unit please use only a slightly damp (not wet!), soft cloth. For the rear no cleaning is necessary. For an unscheduled, individual cleaning of the rear the maintenance staff or assembler is self-responsible.

During normal operation no maintenance is necessary. In case of unexpected problems, failures or malfunctions the unit must be shipped for back to the manufacturer for checking, adjustment and reparation (if necessary). Unauthorized opening and repairing can have negative effects or failures to the protection-measures of the unit.

2. Introduction

The DM222 is a unit for connecting two DMS full bridge sensors, those converted measured values are available at two analog outputs (current/voltage) and at four HTL control outputs. Only one DMS full bridge sensor can be connected to the DM221, and one analog output (current/voltage) is available.

There is a USB programming interface and a RS-485 communication interface with LECOM or MODBUS protocol. With the help of four HTL control inputs, a zero-setting of the DMS sensors can be forced.

The four HTL Control outputs transmit the rising above, the falling below of switching points, as well as movements outside of a range. A DMS error can also be detected.

The HTL Control inputs can be used to release the self-holding at the outputs.

Furthermore, a set function of the analog output can be realized via the HTL Control inputs.

3. Block diagram for DM222

4. Electrical Connections DM222

The terminals should be tightened with a slotted screwdriver (blade width 2mm).

X6 9 8 7 6 5 4 3 2 1 + 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1	X5 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1
¹ ² S1	
$\bigcirc \rightarrow GND \\ \bigcirc \bowtie +24V $ X1 $\bigcirc \omega $ SHIELD	
O → GND O № RSA X2 DM222 O w RSB to nly Input 2	Input 1
X3 SHIELD MEA- MEA- MEA- MEA- MEA- NC SUP- MEA- NC SUP- SUP- MEA- NC SUP- S	X4

For the DM221 the analog output 2 at X5, terminal 7,8,9 and the terminal X3 is without function. (NC = Not connect = terminal unassigned).

It should be noted that all inputs and outputs refer to the same ground potential GND (except USB), which is also the negative pole of the unit supply.

4.1. DC Input Voltage Supply at X1

The unit is supplied with a DC voltage between 18 - 30 VDC via terminals 1 and 2 of X1. The current consumption depends among others on the level of the supply voltage and the settings and is approx. 50 mA at 24VDC without load from the DMS sensors and the analog and digital outputs. All GNDs are internally connected. Terminal 3 of X1 of the DM corresponds to the SHIELD connection.

4.2. DMS Full Bridge Supply at X3, X4

With the terminals SUP+, SUP- resp. 4, 5 of X3 and X4 the DMS sensor can be supplied by a programmable voltage of 3V - 10VDC with max. 50mA. The supply voltage can be read back in mV via Monitor (Page 0) by the codes <0 and <1.

4.3. DMS Full Bridge Readback at X3, X4

With the terminals MEA+, MEA- resp. 6,7 of X3 and X4 the DMS sensor supply voltage can be read back. These terminals must be connected in any case, ideally directly at the full bridge, in order to avoid voltage drops at the supply line.

4.4. DMS Full Bridge Voltage at X3, X4

With the terminals BRI+, BRI- resp. 2, 3 of X3 and X4 the DMS bridge voltage can be evaluated. The bridge voltage in units can be read back via Monitor (Page 0) by the codes <4 and <5.

4.5. Example of Connection DMS Sensor

The picture below shows an example of the connection of a DMS sensor. (SUP = Supply, MEA = Measurement Supply, BRI = Bridge Voltage)

4.6. Control Outputs OUTx at X6

At the terminal 6 to 9 of X6 four HTL Control output signals are available. They can show different states by parameterization. These outputs are high side drivers. The status of the outputs are directly visible in the Outputs field of the OS.

4.7. Control Inputs INx at X6

At the terminal 1 - 4 of X6 four control inputs with HTL PNP characteristic (internal pull-down resistor) are available. The inputs can be used for HTL control signals. They can be programmed for different functions depending on the parameterization. The status of the inputs is directly visible in the Inputs field of the OS.

4.8. Analog Outputs at X5

At the outputs of the terminals two voltage outputs (+/-10V, 0-10V) and two current outputs (0-20mA, 4-20mA) are available. The voltage output is located at the terminals 3 and 8, and the current output at terminals 2 and 7. The cable shield can be connected at terminal 5, 6.

Attention: Only either the current or the voltage output of channel 1 resp. 2 may be used.

4.9. LEDs

The green LED shows that the unit is ready (power supply switched on). The yellow LED indicates a DMS error in case of static control, otherwise it flashes. A DMS error occurs when the current exceeds the value 50mA per DMS sensor or when the calculated resistance value deviates too far from the programmed resistance value. The error also occurs when a line break takes place. The resistance value in ohms can be read back via Monitor (page 0) by the codes <2 and <3.

4.10. **USB**

The USB port can be used to connect to a PC via a USB 2.0 mini type B socket. With the help of OS this interface can be used as a programming interface. The ground isolated USB interface is configured as a virtual port and operates in LECOM protocol with 115.2 kBaud, 8N1. You can download the OS operator software free of charge from our homepage https://www.motrona.com/en/support/software.html, see also QR code on page 2.

4.11. RS-485 at X2

A RS-485 (2-wire) interface can be used at X2. At terminal 3 of X2 the non-inverted driver output resp. input (A/Y) and on the other terminal 2 the inverted driver output resp. input (B/Z) is available. This interface works with LECOM protocol by default and can be changed to MODBUS by parameter setting using USB port and OS

4.12. DIL

The DIL switch contact 3 can be used to set the unit to factory settings. For this, the DIL switch contact 3 must be set to ON when the unit is switched on. The status of the DIL switch is visible in the Inputs field of the OS. (white = OFF, blue = ON).

The DIL switch contact 2 is used for the production test and must be set to ON. During production test the digital and analog outputs are switched over each second. (High/Low and -10V/+10V/0V resp. -20mA/20mA/0mA).

5. Parameter

5.1. Sensor 1 Menu

No.	Parameter	Setting range	Default
000	Supply 1:	3 - 10	5
	This parameter sets the supply of sensor 1 in V. The setting 5 corresponds to a voltage of approx. 5V (Readback via Monitor Page 0 Code <0, calibration by parameter Vin Mea. Gain 1)		
001	<u>Gain 1</u> :	0 - 4	0
	This parameter sets the amplification of bridge voltage 1. A setting of Gain = 0, 1, 2, 3, 4 results a gain of 1, 2, 4, 8, 16. Gain = 0 corresponds to a range of +/- 80mV Gain = 1 corresponds to a range of +/- 40mV Gain = 2 corresponds to a range of +/- 20mV Gain = 3 corresponds to a range of +/- 10mV Gain = 4 corresponds to a range of +/- 5mV		
002	Sampling Time 1:	0 - 12	0
	This parameter sets the sampling time of bridge voltage 1. The sampling time doubles with each step. A higher sampling time results in a more accurate input value. The total time can be read out on page 0 by variable ;8 in ms. and is influenced by parameter Sampling Time 1,2 and the filter.		
003	Offset 1:	-10000 - 10000	0
	This parameter sets the offset of bridge voltage 1. This parameter is also used for the tare function of the inputs and thus overwritten but not permanently saved. Without using the inputs, the offset can be set permanently		
004	Resistor 1:	0 - 10000	350
	This parameter is used to set the bridge resistance (input resistance) of sensor 1. This value can be monitored by the DM. For example, if 350 ohms is set, an error will be triggered at R < 175 ohms and R > 700 ohms. (/2 or *2) (Monitor Page 0 code <2) If the value is set to 0, no error can be detected.		
005	Sensitivity 1:	0.100 - 20.000	1.000
	This parameter sets the sensitivity (mV/V) of the sensor. This parameter is used only for certain types of calculation (see parameter Analog Source)		
006	Voltage 1:	1 - 99999	1000
	This parameter is used to convert the bridge voltage together with the parameter Digit. This parameter is used only for certain types of calculation (see parameter Analog Source)		

007	<u>Digit 1</u> :	1 - 99999	1000
	This parameter is used to convert the bridge voltage together with the parameter Voltage. This parameter is used only for certain types of calculation (see parameter Analog Source)		
800	Correction 1:	0.990 - 1.100	1.000
	With this parameter a correction can be made. This parameter is used only for certain types of calculation (see parameter Analog Source)		
009	Polarity 1:	0 - 1	0
	With this parameter an inversion can be made. A positive measured bridge voltage can be changed into a negative one by the parameter. (Tension and compression with corresponding sign)		
010	Reserved		

5.2. Sensor 2 Menu (only for DM222)

No.	Parameter	Setting range	Default
011	Supply 2:	3 - 10	5
	See Supply 1. (Readback via monitor Page 0 Code <1, calibration by parameter Vin Mea. Gain 2)		
012	<u>Gain 2</u> :	0 - 4	0
	See Gain 1.		
013	Sampling Time 2:	0-12	0
	See Sampling Time 1		
014	Offset 2:	-10000 - 10000	0
	See Offset 1		
015	Resistor 2:	0 - 10000	350
	See Resistor 1 (Monitor Page 0 Codestelle <3)		
016	Sensitivity 2:	100 - 20000	1000
	See Sensitivitiy 1		
017	Voltage 2:	1 - 99999	1000
	See Voltage 1		
018	Digit 2:	1 - 99999	1000
	See Digit 1		
019	Correction 2:	990 - 1100	1000
	See Correction 1		
020	Polarity 2:	0 - 1	0
	See Polarity 1		
021	Reserved		

5.3. Combination Menu

No.	Parameter	Setting range	Default
022	Multiplier 1:	0 - 9999	0
	With this parameter a multiplication with sensor value 1 can be performed. A setting of zero means that no multiplication or division occurs. This parameter is used only for certain types of calculation (see parameter Analog Source)		

023	Divisor 1:	1 — 9999	1000
	With this parameter a division with sensor value 1 can be performed. This parameter is used only for certain types of calculation (see parameter Analog Source)		
024	Multiplier 2: (only for DM222)	0 - 9999	0
	With this parameter a multiplication with sensor value 2 can be performed. A setting of zero means that no multiplication or division occurs. This parameter is used only for certain types of calculation (see parameter Analog Source)		
025	Divisor 2: (only for DM222)	1 — 9999	1000
	With this parameter a division with sensor value 2 can be performed. This parameter is used only for certain types of calculation (see parameter Analog Source)		
026	Reserved		
027	Reserved		

5.4. Digital Input Menu

No.	Parameter	Setting range	Default
028	Input 1 Config:	0 - 1	0
	Defines the behavior of the input. 0: Static Low, function triggering at a "low" state 1: Static High, function triggering at a "high" state		
029	Input 1 Function:	0 - 11	0
	 0: No function 1: Tara for bridge voltage 1 (zero setting) 2: Tara for bridge voltage 2 (zero setting) 3: Tara für bridge voltage 1-2 (zero setting) 4: Reset of the self-holding for output 1 5: Reset of the self-holding for output 2 6: Reset of the self-holding for output 3 7: Reset of the self-holding for output 4 8: Reset of the self-holding for output 1-4 9: Set analog output 1 to set value 10: Set analog output 1-2 to set value 		
030	Input 2 Config:	0 - 1	0
031	see Input 1 Config Input 2 Function:	0 - 11	0
		U - TT	0
032	see Input 1 Function Input 3 Config:	0 - 1	0
	see Input 1 Config		
033	Input 3 Function:	0 - 11	0
	see Input 1 Function		

034	Input 4 Config:	0 - 1	0
	see Input 1 Config		
035	Input 4 Function:	0 - 11	0
	see Input 1 Function		
036	Reserved		
037	Reserved		

5.5. Analog Output 1 Menu

No.	Parameter	Setting range	Default
038	Analog Source 1:	0 - 5	0
	O: for the analog output 1 the direct converted bridge voltage of sensor 1 is used		
	1: for the analog output 1 the converted bridge voltage of sensor 1 is used		
	2: for the analog output 1 the direct converted bridge voltage of sensor 2 is used		
	3: for the analog output 1 the converted bridge voltage of sensor 2 is used		
	4: for the analog output 1 the factorized bridge voltage of sensor 1 + sensor 2 is used.		
	5: for the analog output 1 the single converted bridge voltage of sensor 1 + sensor 2 is used.		
039	Analog Mode 1:	0 - 3	1
	Selection of analog output 1 0: 0V - 10V (Analog Start = 0V, Analog End = 10V) 1: -10V - +10V (Analog Start = -10V, Analog End = +10V) 2: 0mA - 20mA (Analog Start = 0mA, Analog End = 20mA) 3: 4mA - 20mA (Analog Start = 4mA, Analog End = 20mA)		
040	Analog Start 1:	-99999 - 99999	0
	Value at which the analog output is set to 0V or 0mA resp. 4mA. (see Analog Mode)		
041	Analog End 1:	-99999 - 99999	10000
	Value at which the analog output is set to 10V or 20mA. (see Analog Mode)		
042	Analog Set 1:	-10000 - 10000	0
	Control value for the analog output, if the command "Set" appears at the control input or via interface.		
043	Reserved		

5.6. Analog Output 2 Menu (only DM222)

No.	Parameter	Setting range	Default
044	Analog Source 2:	0 - 5	0
	See Analog Source 1.		
045	Analog Mode 2:	0 - 3	1
	See Analog Mode 1.		
046	Analog Start 2:	-99999 - 99999	0
	See Analog Start 1.		
047	Analog End 2:	-99999 - 99999	10000
	See Analog End 1.		
048	Analog Set 2:	-10000 - 10000	0
	See Analog Set 1.		
049	Reserved		

5.7. Digital Output Menu

No.	Parameter	Setting range	Default
050	Output Polarity:	0 - 15	0
	Switching the output polarity (binary)		
	0: no inversion of the outputs		
	Bit Value 1: OUT1 inverted		
	Bit Value 2: OUT2 inverted		
	Bit Value 4: OUT3 inverted		
	Bit Value 8: OUT4 inverted		
	Example 1+2+4+8 = 15: all outputs are inverted		
051	Output Lock:	0 - 15	0
	Activation of the self-holding (binary)		
	0: no self-holding of the outputs		
	Bit Value 1: for OUT1 the self-holding is activated		
	Bit Value 2: für OUT2 the self-holding is activated		
	Bit Value 4: für OUT3 the self-holding is activated		
	Bit Value 8: für OUT4 the self-holding is activated		
	Example 1+2+4+8 = 15: self-holding is activated for all outputs		
052	Output Source 1:	0 - 3	0
	Selection of calculation for output 1. (see Analog Source)		
	0: Selection for channel 1 as set in Analog Source 1		
	1: Selection for channel 2 as set in Analog Source 2		
	2: Original value for channel 1		
	3: Original value for channel 2		

053	Output Function 1:	0 - 7	0
	Output 1 function 0: no function (controlled on low) 1: Output becomes high when Output Source 1 > Output Preselec. 1 2: Output becomes high when Output Source 1 > Output Preselec. 1 3: Output becomes high when Output Source 1 < Output Preselec. 1 4: Output becomes high when Output Source 1 < Output Preselec. 1 5: Output becomes high when Output Source 1 outside the band 6: Output becomes high, when Output Source 1 outside the band 7: Output becomes high, when a DMS sensor error is detected The band is defined as Output Preselec. 1 +/- (Output Preselec. 1 x Output Hysteresis 1 / 100) Example: Output Preselec. 1 = 2000 Output Hysteresis 1 = 15 As result the band reaches from 1700 to 2300 center 2000 +/- 300 (15% von 2000)		
054	Output Hysteresis 1: Hysteresis (difference between switch-on and switch-off) for Output 1	0 - 100	0
	in % refered to Output 1 Preselec. 1.		
055	Output Preselec. 1:	-9999 - +9999	1000
	Switching point for Output 1 (If a band is selected, the Output Preselec. 1 corresponds to the center of the band)		
056	Output Source 2:	0 - 3	0
	See Output Source 1		
057	Output Function 2:	0 - 7	0
	See Output Source 1		
058	Output Hysteresis 2:	0 - 100	0
	See Output Source 1		
059	Output Preselec. 2:	-9999 - +9999	1000
	See Output Source 1		
060	Output Source 3:	0 - 3	0
004	See Output Source 1	0.7	
061	Output Function 3:	0 - 7	0
062	See Output Source 1	0 100	0
062	Output Hysteresis 3:	0 - 100	0
063	See Output Source 1 Output Preselec. 3:	-9999 - +9999	1000
003		-0000 - 40000	1000
064	See Output Source 1 Output Source 4:	0 - 3	0
004		0 0	0
065	See Output Source 1 Output Function 4:	0 - 7	0
000	See Output Source 1	0 /	0
	b oi e.docx / Feb-23	Seite 19 /	10

066	Output Hysteresis 4:	0 - 100	0
	See Output Source 1		
067	Output Preselec. 4:	-9999 - +9999	1000
	See Output Source 1		
068	Reserved		
069	Reserved		

5.8. Modbus Menu

No.	Parameter	Setting range	Default
070	Modbus Address:	1 - 247	1
	Modbus address		
071	Modbus CRC Reset:	0 - 1	0
	Modbus CRC calculator reset Additional tool, used to calculate the CRC value		
072	Modbus CRC Byte:	0 - 255	0
	Modbus CRC calculator byte Additional tool, used to calculate the CRC value		
073	Reserved		

5.9. Serial Menu

074 USB Unit Nr.: USB unit no for the virtual port is fixed to 11. 11 11 075 USB Baud Rate: USB baud rate for the virtual port is fixed to 115.2kBaud. 0 0 076 USB Baud Rate: USB format for the virtual port is fixed to 8N1. 0 0 077 Serial Page: Selection of a specific variable page for internal diagnostics 0 - 5 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Baud Rate BS-485 interface to different protocols, baud rates and 801 3 : Modbus protocol with RS baud rate and 801 3 : Modbus protocol with RS baud rate and 8N2 0 - 10 10 079 BS Luit Nr.: Unit no. for the RS-485 interface (only for Lecom protocol) 0 - 10 10 080 RS Baud Rate: S 13200 Baud 0 - 10 10 1 4800 B	No.	Parameter	Setting range	Default
075 USB Baud Rate: USB baud rate for the virtual port is fixed to 115.2kBaud. 0 0 076 USB Baud Rate: USB format for the virtual port is fixed to 8N1. 0 0 077 Serial Page: Selection of a specific variable page for internal diagnostics 0 - 5 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 078 Serial Mode: Selection of a specific variable page for internal diagnostics 0 - 3 0 079 RS Unit Nr: Unit no. for the RS-485 interface (only for Lecom protocol) 11 - 99 11 080 Baud Rate: Si 200 Baud 0 - 10 10 RS Baud Rate for the RS-485 interface 0 - 0 10	074	USB Unit Nr.:	11	11
USB baud rate for the virtual port is fixed to 115.2kBaud. 0 0 076 USB Baud Rate: 0 0 USB format for the virtual port is fixed to 8N1. 0 0 077 Serial Page: 0.5 0 Selection of a specific variable page for internal diagnostics 0.5 0 078 Serial Mode: 0.3 0 078 Serial Mode: 0.3 0 0.1 Ecom protocol with RS unit no., baud rate and format 0.3 0 1.1 Modbus protocol with RS baud rate and 801 3 0 11 9 11 0.1 Ecom protocol with RS baud rate and 801 3 11 9 11 0.1 Not bus protocol with RS baud rate and 801 3 11 9 11 0.1 Not Baud Rate: 0.10 10 10 10 RS Baud Rate for the RS-485 interface 0.10 10 10 10 RS Baud Rate for the RS-485 interface 0.900 Baud 2:2400 Baud 2:2400 Baud 2:2400 Baud 3:1200 Ba		USB unit no for the virtual port is fixed to 11.		
076USB Baud Rate: USB format for the virtual port is fixed to 8N1.00077Serial Page: Selection of a specific variable page for internal diagnostics0 - 50078Serial Mode: Serial Mode:0 - 30078Serial Mode: Serial Mode:0 - 30078Serial Mode: Serial Mode:0 - 30079Serial work Serial Mode:0 - 3001: Modbus protocol with RS unit no., baud rate and format 1: Modbus protocol with RS baud rate and 8E1 2: Modbus protocol with RS baud rate and 801 3: Modbus protocol with RS baud rate and 801 3: Modbus protocol with RS baud rate and 8N211 - 99079RS Unit Nr.: Unit no. for the RS-485 interface (only for Lecom protocol)1010080RS Baud Rate fot the RS-485 interface 0: 9600 Baud 1: 4800 Baud 2: 2400 Baud 3: 1200 Baud 3: 1200 Baud 3: 1200 Baud 3: 57600 Baud 3: 57600 Baud 3: 15200 Baud 3: 15200 Baud 3: 15200 Baud 3: 15200 Baud 3: 57600 Baud 3: 15200 Baud 3: 15200 Baud 3: 15200 Baud 3: 2301 (B Data Bit, Non Parity, 1 Stop Bit) 1: 8E1 (B Data Bit, Non Parity, 1 Stop Bit) 1: 8E1 (B Data Bit, Oud Parity, 1 Stop Bit) 1: 8E1 (B Data Bit, Oud Parity, 1 Stop Bit)0 - 20082ReservedServedServedServedServed	075	USB Baud Rate:	0	0
USB format for the virtual port is fixed to 8N1.077Serial Page: Selection of a specific variable page for internal diagnostics0 - 50078Serial Mode: Switching the RS-485 interface to different protocols, baud rates and formats 0 : Lecom protocol with RS unit no., baud rate and format 1 : Modbus protocol with RS baud rate and 8E1 2 : Modbus protocol with RS baud rate and 8B1 2 : Modbus protocol with RS baud rate and 8B1 2 : Modbus protocol with RS baud rate and 8N20 - 30079RS Unit Nr.: Unit no. for the RS-485 interface (only for Lecom protocol)11 - 9911080RS Baud Rate: 0 : 9600 Baud 1 : 4800 Baud 2 : 2400 Baud 3 : 1020 Baud 3 : 1020 Baud 3 : 1020 Baud 3 : 15200 Baud 1 : 15200 Baud 1 : 15200 Baud 1 : 15200 Baud 1 : 15200 Baud0 - 20081RS Format: r Format for the RS-485 interface 0 : 9600 Baud 1 : 15200 Baud 1 : 15200 Baud0 - 20081RS Format: r Set on Baud 1 : 15200 Baud 1 : 15200 Baud 1 : 15200 Baud0 - 20081RS Format: r Set on Baud 1 : 15200 Baud 1 : 15200 Baud0 - 20081RS Format: r Set on Baud 1 : 15200 Baud0 - 20082ReservedUnit RD - 15 = 00		USB baud rate for the virtual port is fixed to 115.2kBaud.		
077Serial Page: Selection of a specific variable page for internal diagnostics0 - 50078Serial Mode: Switching the RS-485 interface to different protocols, baud rates and formats 0 : Lecom protocol with RS baud rate and 801 3 : Modbus protocol with RS baud rate and 801 3 : Modbus protocol with RS baud rate and 801 3 : Modbus protocol with RS baud rate and 801 0 - 100 - 30079RS Unit Nr.: Unit no. for the RS-485 interface (only for Lecom protocol)11 - 9911080RS Baud Rate: 0 - 100 - 1010081RS Baud Rate 3 : 200 Baud 4 : 600 Baud 5 : 19200 Baud 6 : 38400 Baud 5 : 19200 Baud 10 : 115200 Baud 10 : 115200 Baud0 - 20081RS Format: remat for the RS-485 interface 0 : 800 Baud 1 : 15200 Baud 10 : 115200 Baud0 - 20081RS Format: remat for the RS-485 interface 0 : 811 (B Data Bit, Non Parity, 1 Stop Bit) 1 : 8E1 (B Data Bit, Non Parity, 1 Stop Bit) 2 : 801 (B Data Bit, Odd Parity, 1 Stop Bit) 2 : 801 (B Data Bit, Odd Parity, 1 Stop Bit)0 - 20	076	USB Baud Rate:	0	0
Selection of a specific variable page for internal diagnostics 0 - 3 078 Serial Mode: 0 - 3 078 Switching the RS-485 interface to different protocols, baud rates and format 0 - 3 0 Switching the RS-485 interface to different protocols, baud rates and format 0 - 3 0 Switching the RS-485 interface to different protocols, baud rates and 801 0 2 : Modbus protocol with RS baud rate and 801 11 - 99 3 : Modbus protocol with RS baud rate and 8N2 11 - 99 079 RS Unit Nr.: 11 - 99 Unit no. for the RS-485 interface (only for Lecom protocol) 0 - 10 10 RS Baud Rate for the RS-485 interface 0 - 10 10 RS Baud Rate for the RS-485 interface 0 - 10 10 RS Baud 3: 1200 Baud 3: 1200 Baud 12: 2400 Baud 3: 1200 Baud 5: 19200 Baud 13: 57600 Baud 10: 115200 Baud 9: 76800 Baud 10: 115200 Baud 0 - 2 0 Format for the RS-485 interface 0 - 2 0 Format for the RS-485 interface 0 - 2 0 081 RS Format: 0 - 2 0 082 Reser		USB format for the virtual port is fixed to 8N1.		
078Serial Mode:0 - 30Switching the RS-485 interface to different protocols, baud rates and formats 0 : Lecom protocol with RS baud rate and 8E1 2 : Modbus protocol with RS baud rate and 801 3 : Modbus protocol with RS baud rate and 801 3 : Modbus protocol with RS baud rate and 8N211 - 9911079RS Unit Nr.: Unit no. for the RS-485 interface (only for Lecom protocol)0 - 1010080RS Baud Rate: 0 : 9600 Baud 1 : 4800 Baud 2 : 2400 Baud 5 : 19200 Baud 5 : 19200 Baud 5 : 57600 Baud 9 : 76800 Baud 10 : 115200 Baud 9 : 76800 Baud 10 : 115200 Baud0 - 20081RS Format: Format for the RS-485 interface 0 : 9810 Baud 2 : 2400 Baud 5 : 19200 Baud 9 : 76800 Baud 10 : 115200 Baud 9 : 76800 Baud 10 : 115200 Baud 9 : 76800 Baud 10 : 115200 Baud 9 : 76800 Baud 9 :	077	Serial Page:	0 - 5	0
Switching the RS-485 interface to different protocols, baud rates and formatsSwitching the RS-485 interface to different protocols, baud rates and formats0 : Lecom protocol with RS baud rate and 8E1 2 : Modbus protocol with RS baud rate and 8D1 3 : Modbus protocol with RS baud rate and 8D1 3 : Modbus protocol with RS baud rate and 8N211 - 99079RS Unit Nr.: Unit no. for the RS-485 interface (only for Lecom protocol)11 - 9911080RS Baud Rate: 0 : 9600 Baud 1 : 4800 Baud 2 : 2400 Baud 3 : 1200 Baud 4 : 600 Baud 5 : 19200 Baud 6 : 38400 Baud 9 : 76800 Baud 10 : 115200 Baud 9 : 76800 Baud 10 : 115200 Baud 10 :		Selection of a specific variable page for internal diagnostics		
formatsImage: constraint of the second s	078	Serial Mode:	0 - 3	0
0 : Lecom protocol with RS unit no., baud rate and format 1 : Modbus protocol with RS baud rate and 8E1 2 : Modbus protocol with RS baud rate and 801 3 : Modbus protocol with RS baud rate and 801 3 : Modbus protocol with RS baud rate and 8N211 - 9911079RS Unit Nr.: Unit no. for the RS-485 interface (only for Lecom protocol)11 - 9911080RS Baud Rate 0 : 9600 Baud 1 : 4800 Baud 2 : 2400 Baud 3 : 1200 Baud 4 : 600 Baud 5 : 19200 Baud 6 : 38400 Baud 7 : 56000 Baud 1 : 115200 Baud 8 : 57600 Baud 10 : 115200 Baud 9 : 76800 Baud 9 : 76800 Baud 10 : 115200 Baud 9 : 76800 Baud <b< td=""><td></td><td></td><td></td><td></td></b<>				
1 : Modbus protocol with RS baud rate and 8E1 2 : Modbus protocol with RS baud rate and 801 3 : Modbus protocol with RS baud rate and 8N211 - 99079RS Unit Nr.: Unit no. for the RS-485 interface (only for Lecom protocol)11 - 9911080RS Baud Rate: 0 - 100 - 1010RS Baud Rate fot the RS-485 interface 0 : 9600 Baud 1: 4800 Baud 2: 2400 Baud 3: 1200 Baud 4: 600 Baud 5: 19200 Baud 6: 38400 Baud 5: 19200 Baud 6: 38400 Baud 9: 76600 Baud 10: 115200 Baud 10: 115200 Baud 9: 76800 Baud <td></td> <td></td> <td></td> <td></td>				
2 : Modbus protocol with RS baud rate and 801 3 : Modbus protocol with RS baud rate and 8N211 - 99079RS Unit Nr.: Unit no. for the RS-485 interface (only for Lecom protocol)11 - 99080RS Baud Rate: 0 - 100 - 10080RS Baud Rate fot the RS-485 interface 				
079 RS Unit Nr.: 11 - 99 11 Unit no. for the RS-485 interface (only for Lecom protocol) 0 - 10 10 080 RS Baud Rate: 0 - 10 10 RS Baud Rate fot the RS-485 interface 0 - 10 10 080 RS Baud Rate fot the RS-485 interface 0 - 10 10 081 RS Baud Rate fot the RS-485 interface 0 - 10 10 082 RS Daud 1 + 4800 Baud 1		2 : Modbus protocol with RS baud rate and 801		
Unit no. for the RS-485 interface (only for Lecom protocol)0 - 1010080RS Baud Rate: 0 - 9600 Baud 1 : 4800 Baud 2 : 2400 Baud 3 : 1200 Baud 4 : 600 Baud 5 : 19200 Baud 6 : 38400 Baud 5 : 19200 Baud 6 : 38400 Baud 9 : 76600 Baud 9 :	070		11.00	
O80 RS Baud Rate: 0 - 10 10 RS Baud Rate fot the RS-485 interface 0 - 9600 Baud 1 4800 Baud 1 1 10 10 10 10 2: 2400 Baud 3: 1200 Baud 1: 4800 Baud 1: 9200 Baud 10 11 10<	0/9	<u>RS Unit Nr.</u> :	11 - 99	11
RS Baud Rate fot the RS-485 interface 0: 9600 Baud 1: 4800 Baud 2: 2400 Baud 2: 2400 Baud 3: 1200 Baud 3: 1200 Baud 4: 600 Baud 5: 19200 Baud 6: 38400 Baud 6: 38400 Baud 7: 56000 Baud 9: 76800 Baud 9: 76800 Baud 9: 76800 Baud 0 - 2 081 RS Format: Pormat for the RS-485 interface 0 - 2 0: 8N1 (8 Data Bit, Non Parity, 1 Stop Bit) 1: 8E1 (8 Data Bit, Non Parity, 1 Stop Bit) 1: 8E1 (8 Data Bit, Odd Parity, 1 Stop Bit) 2: 801 (8 Data Bit, Odd Parity, 1 Stop Bit) 082 Reserved Image: Comparity of the Comparity of th		Unit no. for the RS-485 interface (only for Lecom protocol)		
0 : 9600 Baud 1: 4800 Baud 1: 4800 Baud 2: 2400 Baud 2: 2400 Baud 3: 1200 Baud 3: 1200 Baud 6: 0800 Baud 5: 19200 Baud 6: 38400 Baud 6: 38400 Baud 7: 56000 Baud 8: 57600 Baud 9: 76800 Baud 9: 76800 Baud 0 - 2 081 RS Format: Format for the RS-485 interface 0: 8N1 (8 Data Bit, Non Parity, 1 Stop Bit) 1: 8E1 (8 Data Bit, Even Parity, 1 Stop Bit) 1: 8E1 (8 Data Bit, Odd Parity, 1 Stop Bit) 2: 801 (8 Data Bit, Odd Parity, 1 Stop Bit) 2: 801 (8 Data Bit, Odd Parity, 1 Stop Bit) 082 Reserved	080	RS Baud Rate:	0 - 10	10
1: 4800 Baud 2: 2400 Baud 3: 1200 Baud 4: 600 Baud 5: 19200 Baud 6: 38400 Baud 7: 5600 Baud 8: 57600 Baud 9: 76800 Baud 10: 115200 Baud 10: 115200 Baud				
2: 2400 Baud 3: 1200 Baud 3: 1200 Baud 4: 600 Baud 4: 600 Baud 5: 19200 Baud 6: 38400 Baud 7: 56000 Baud 8: 57600 Baud 8: 57600 Baud 9: 76800 Baud 9: 76800 Baud 10: 115200 Baud 0 - 2 081 RS Format: 0 - 2 0 Format for the RS-485 interface 0: 8N1 (8 Data Bit, Non Parity, 1 Stop Bit) 1: 8E1 (8 Data Bit, Even Parity, 1 Stop Bit) 1: 8E1 (8 Data Bit, Odd Parity, 1 Stop Bit) 2: 801 (8 Data Bit, Odd Parity, 1 Stop Bit) 2: 801 (8 Data Bit, Odd Parity, 1 Stop Bit) 082 Reserved				
3: 1200 Baud 4: 600 Baud 5: 19200 Baud 6: 38400 Baud 7: 56000 Baud 8: 57600 Baud 9: 76800 Baud 9: 76800 Baud 10: 115200 Baud				
4: 600 Baud 5: 19200 Baud 6: 38400 Baud 5: 38400 Baud 7: 56000 Baud 8: 57600 Baud 7: 5600 Baud 9: 76800 Baud 9: 76800 Baud 9: 76800 Baud 10: 115200 Baud 0 - 2 081 RS Format: 0 - 2 0 Format for the RS-485 interface 0: 8N1 (8 Data Bit, Non Parity, 1 Stop Bit) 1: 8E1 (8 Data Bit, Even Parity, 1 Stop Bit) 1: 8E1 (8 Data Bit, Odd Parity, 1 Stop Bit) 1: 821 (8 Data Bit, Odd Parity, 1 Stop Bit) 2: 801 (8 Data Bit, Odd Parity, 1 Stop Bit) 0 0 082 Reserved 0 0 0 0				
6: 38400 Baud 7: 56000 Baud 8: 57600 Baud 9: 76800 Baud 10: 115200 BaudImage: Constant of the second				
7: 56000 Baud 8: 57600 Baud 9: 76800 Baud 10: 115200 BaudImage: Constant of the second seco				
8: 57600 Baud 9: 76800 Baud 10: 115200 Baud00081RS Format: Format for the RS-485 interface 0: 8N1 (8 Data Bit, Non Parity, 1 Stop Bit) 1: 8E1 (8 Data Bit, Even Parity, 1 Stop Bit) 2: 801 (8 Data Bit, Odd Parity, 1 Stop Bit) 2: 801 (8 Data Bit, Odd Parity, 1 Stop Bit)0082ReservedImage: Comparison of the store of				
9: 76800 Baud 10: 115200 Baud9: 76800 Baud081RS Format: 0 - 20 - 2081Format for the RS-485 interface 0 : 8N1 (8 Data Bit, Non Parity, 1 Stop Bit) 1 : 8E1 (8 Data Bit, Even Parity, 1 Stop Bit) 2 : 801 (8 Data Bit, 0dd Parity, 1 Stop Bit)0 - 2082ReservedImage: Comparison of the Comparison of				
081RS Format:0 - 20Format for the RS-485 interface 0 : 8N1 (8 Data Bit, Non Parity, 1 Stop Bit) 1 : 8E1 (8 Data Bit, Even Parity, 1 Stop Bit) 2 : 801 (8 Data Bit, 0dd Parity, 1 Stop Bit)				
Format for the RS-485 interface 0 : 8N1 (8 Data Bit, Non Parity, 1 Stop Bit) 1 : 8E1 (8 Data Bit, Even Parity, 1 Stop Bit) 2 : 801 (8 Data Bit, Odd Parity, 1 Stop Bit)082Reserved		10: 115200 Baud		
0 : 8N1 (8 Data Bit, Non Parity, 1 Stop Bit) 1 : 8E1 (8 Data Bit, Even Parity, 1 Stop Bit) 2 : 801 (8 Data Bit, Odd Parity, 1 Stop Bit)082Reserved	081	RS Format:	0 - 2	0
1 : 8E1 (8 Data Bit, Even Parity, 1 Stop Bit) 2 : 801 (8 Data Bit, Odd Parity, 1 Stop Bit)082Reserved				
2:801 (8 Data Bit, Odd Parity, 1 Stop Bit) 082 Reserved				
082 Reserved				
	000			
	083	Heserved		

5.10. General Menu

No.	Parameter	Setting range	Default
084	Filter:This parameter provides a better filtering of the DMS sensor supply readback.The filter time is doubled with each increase in value. The longer the filter time, the more accurate the read value.The total read-in time can be read out on page 3 by variable ;9 in ms. The total reading time is influenced by parameter Sampling Time 1,2	0 – 5	0
085	and filter. <u>Min Max Channel:</u>	0 - 5	0
	Selection of the analog input for min/max value monitoring. With the Min/Max value monitoring the fluctuation range of the signal can be determined, an increase of the sampling time or the filter can reduce the fluctuations. 0 : Read back supply voltage sensor 1 1 : Read back supply voltage sensor 2 2 : Bridge voltage sensor 1 3 : Bridge voltage sensor 2 4 : Current measurement sensor 1 5 : Current measurement sensor 2		
086	Reset Min Max:	0 - 1	0
	If this parameter is set to 1, the minimum and maximum values are reset. If the parameter is set to 0, continuous recording of the minimum and maximum values takes place.		
087	Monitor Switch:	0 - 1	0
	If this parameter is set to 0, the analog output 1 is displayed in the Output Value field in the OS, otherwise the analog output 2 is displayed		
088	Reserved		
089	Reserved		

5.11. Adjustment Menu

No.	Parameter	Setting range	Default
090	Vout Offset 1:	-30 - +30	0
	Voltage offset setting for analog output 1. (see calibration of the analog output)		
091	Vout Gain 1:	0.9990 - 1.0010	1.0000
	Voltage gain setting for analog output 1. (see calibration of the analog output)		
092	lout Offset 1:	-30 - +30	0
	Current offset setting for analog output 1 (see calibration of the analog output)		
093	lout Gain 1:	0.9990 - 1.0010	1.0000
	Current gain setting for analog output 1 (see calibration of the analog output)		
094	Vout Offset 2:	-30 - +30	0
	Voltage offset setting for analog output 2. (see calibration of the analog output)		
095	Vout Gain 2:	0.9990 - 1.0010	1.0000
	Voltage gain setting for analog output 2. (see calibration of the analog output)		
096	lout Offset 2:	-30 - +30	0
	Current offset setting for analog output 2. (see calibration of the analog output)		
097	lout Gain 2:	0.9990 - 1.0010	1.0000
	Current gain setting for analog output 2. (see calibration of the analog output)		
098	Out Temp. C.:	0-1	0
	Temperature compensation for the analog outputs. If the OUT TC parameter is set to 0, the outputs are corrected by an internal temperature measurement. This provides better accuracy. The temperature compensation refers only to the gain		
099	Vin T. Offset 1:	0.5000 - 1.5000	1.0000
	Voltage-temperature offset setting for analog input 1 (Fine adjustment of temperature compensation)		
100	Vin T. Offset 2:	0.5000 - 1.5000	1.0000
	Voltage-temperature offset setting for analog input 2. (Fine adjustment of temperature compensation)		

101	Vin T. Gain 1:	0.90000 -	1.00000
	Voltage-temperature gain setting for analog input 1 (Fine adjustment of temperature compensation)	1.10000	
102	Vin T. Gain 2:	0.90000 -	1.00000
	Voltage-temperature gain setting for analog input 2. (Fine adjustment of temperature compensation)	1.10000	
103	In Temp. C.:	0-3	0
	Temperature compensation for the analog inputs. IN TC = 0: compensation of Offset and Gain IN TC = 1: only Offset compensation IN TC = 2: only Gain compensation IN TC = 3: no compensation		
104	Vin Mea. Gain 1:	0.8000 - 1.2000	1.0000
	Gain setting for the input MEA 1. (MEA)		
105	Vin Mea. Gain 2:	0.8000 - 1.2000	1.0000
	Gain setting for the input MEA 2. (MEA)		
106	Temp. Offset I1:	0-1	0
	Inversion of the temperature compensation for the offset of input 1.		
107	Temp. Offset I2:	0 - 1	0
	Inversion of the temperature compensation for the offset of input 2.		
108	Temp. Gain I1:	0 - 1	0
	Inversion of the temperature compensation for the gain of input 1.		
109	Temp. Gain I2:	0-1	0
	Inversion of the temperature compensation for the gain of input 2.		
110	Temp. Sim:	0-1	0
	If parameter Temp. Sim = 0 is set, the internal temperature sensor is used. If the parameter is set to 1, parameter Temp. Sim. Value is used instead of the internal temperature sensor. This allows the temperature to be simulated and the calculation of the temperature compensation to be checked.		
111	Temp. Sim. Value:	870 - 1412	1140
	Temperature simulation. The value 870 corresponds to $+60^{\circ}$, the value 1140 corresponds to $+20^{\circ}$ and the value 1412 corresponds to -20° . The current temperature can be read out by the monitor value Page 0 code ;7.		
112	Reserved		
113	Reserved		

6. Commissioning

6.1. Basic Setting of the DMS Sensor

For connecting or wiring see connection example for DMS sensor. After connection the parameter Supply, Gain, Sampling, Resistor and Filter can be set.

Parameter Supply corresponds to the supply voltage of the DMS sensor, this can be found in the operating manual of the sensor. Values from 3 (3V) to 10 (10V) can be set for parameter Supply. The Monitor Page 0 code >0,>1 is used to readback the supply voltage in mV, the measurement can be calibrated by parameter Vin Mea Gain. Also in the operating manual of the sensor you can find the value of the input resistance. This can be adopted for parameter Resistor. A check of the resistance value in ohms can be done by Monitor Page 0 with the code <2, <3. A miscalibration of Vin Mea Gain will result in a miscalculation.

The gain should be selected so that the input voltage range is not exceeded at maximum load. At gain = 0 this is +/-80mV. This can be calculated approximately using a reference weight, for example.

Parameter Sampling Time should be selected in dependence of Gain, so that the input fluctuation is as small as possible and the input is still dynamic enough. This also applies to parameter Filter. The resulting read-in cycle time can be displayed in the Page 0 monitor with the code ;8 in ms.

With the parameter Polarity a negative magnitude can be changed into a positive one. Thus, the user can provide tension and pressure with the corresponding sign.

Wiring faults, open connections and short circuits on the sensor can be detected by checking the monitor variables, by the Outputs field of the OS, or indicated by an output. (Read back supply voltage and calculated resistor value)

Attention:

Check whether the sensor is designed for the programmed supply voltage. (Data sheet sensor: supply voltage)

Check if the input voltage range is within the maximum load of the sensor (Data sheet sensor: nominal characteristic value [mV/V] x supply voltage)

6.2. Simplest Setting

The simplest setting for the analog and digital outputs is to use the directly converted bridge voltage. (Monitor Page 0 channel 1: <4, channel 2: <5)

For this, parameter Analog Source must be set to 0 or 2 for the analog outputs, for the digital outputs, parameter Output Source can also be set to 2 or 3.

The following parameters must be adjusted for the strain gauge sensor:

Parameter Supply: Data sheet sensor -> Permissible supply voltage of the DMS sensor

Parameter Gain: Data sheet sensor -> Sensor operating range

Parameter Sampling: fluctuation of measurement and dynamics of change

Parameter Resistor: Data sheet sensor -> input resistance

Setting with zeroing:

Zeroing is necessary when forces act in both directions and the transition of e.g. tension and pressure of the input variable is to be determined in the form of the sign.

Parameter Offset is decisive for zeroing. The unloaded DMS sensor can be zeroed using the tare function. The value displayed in the monitor can also be transferred directly to the offset register. Then the monitor value displays zero. With the tare function using an input, the value is only saved temporarily, after a new power-up, it must be zeroed again.

If the tare function is performed using the OS or serial communication, the value can also be saved by an OS Store Eeprom command.

Then the DMS sensor is loaded with a reference weight. A new monitor value is displayed, which corresponds to the reference weight. This value can now be converted into units for the analog and digital outputs. Based on the monitor value, you can determine the resolution in relation to the reference weight and then also optimize parameter Gain. When parameter Gain is changed, parameter Offset must also be adjusted.

Example for channel 1:

Monitor value Page 0 <4:</th>25 at Offset = 0, DMS unloadedMonitor value Page 0 <4:</td>0 at Offset = 25, DMS unloaded and zeroedMonitor value Page 0 <4:</td>1000 at 5kg reference weightIt follows that at 50kg the value must be 10000. If the digital output is to switch at more than 40kg,the Output Preselec. must be set to 8000. If the analog output is to output at 0kg -> 0V, and at 50kg ->10V, Analog Start = 0 and Analog End = 10000 must be set.

Setting without zeroing:

Zeroing is not necessary if the input variable is not required as a reference for the forces, that means the acting forces are not directly readable from the input variable. (e.g. value 531 -> 400g) After that, the DMS sensor is loaded with a reference weight, a new monitor value is displayed, that corresponds to the reference weight. This value can now be converted into units for the analog and digital outputs. Based on the monitor value, you can determine the resolution in relation to the reference weight and then also optimize parameter Gain.

Example for channel 1:

Monitor value Page 0 <4: 25 at Offset = 0, DMS unloaded Monitor value Page 0 <4: 1025 at 5kg reference weight It follows that at 50kg the value must be 10025. (1025 - 25 = 1000 corresponds)5kg -> 50kg = 10000, -> monitor value at 50kg = 10025)If the digital output is to switch at more than 40kg, the Output Preselec. must be set to 8025. If the analog output is to output at 0kg -> 0V, and at 50kg -> 10V, Analog Start = 25 and Analog End = 10025 must be set.

6.3. Conversion to Sensor Units

A conversion to sensor units is necessary if these quantities are to be transmitted by the interface and an external conversion is to be dispensed with. Furthermore, this type of conversion is necessary if a reference load or reference weight is not used for setting.

By using parameters Sensitivity, Voltage, Digits, and Correction, the read-in sensor value can be converted into units such as N or kg. For parameter Correction, you need a reference load or a reference weight with which the displayed value can be corrected.

Parameter Analog Source must be set to 1 or 3 for the analog outputs and parameter Output Source must be set to 0 or 1 for the digital outputs.

Parameter Offset is important for zeroing. The unloaded DMS sensor can be zeroed using the tare function. The value displayed in the monitor can also be transferred directly to the offset register. Then the monitor value displays zero. When using the tare function with the help of an input, the value is only saved temporarily; after a new power-up, it must be zeroed again.

If the tare function is operated by using the OS or serial communication, the value can also be saved by using a Store Eeprom.

Parameter Sensitivity corresponds to the sensitivity (mV/V) of the DMS sensor, this can be found in the operating manual of the sensor. The standard load or standard force can also be found here. (e.g. 2mV/V @ 100N or 10.194 kg)

Parameter Sensitivity = 2,000	see data sheet
Parameter Analog Source = 1	calculation type
Parameter Voltage = 1000	Gain = 1
Parameter Digits = 10194	conversion to kg, number of digits in g
Parameter Correction = 1000	no correction
Parameter Offset = 133	-> 0
With a reference weight of 200g	-> input variable 54
Conversion	-> 197201

Attention: Here a multiplication by a factor of 4 takes place, it would be better to raise the gain to 4 if you want an accuracy to 1g.

To adjust the conversion to a small extent, parameter Correction can be used. A 1% adjustment is made by 990 or 1010.

Checking of the calculation can be done by Monitor Page 0 with the code position <8, <9.

Based on the monitor value, you can determine the resolution in relation to the reference weight and then also optimize parameter Gain. With changing of parameter Gain, parameter Offset must also be adjusted.

6.4. Combined Sensors

The combined setting for the analog and digital outputs is to use the factorized or the single converted bridge voltages. (Monitor Page 0 channel 1: <8, channel 2: <9)

For this purpose, parameter Analog Source must be set to 4 or 5 for the analog outputs, and parameter Output Source can also be set to 2 or 3 for the digital outputs.

Parameter Offset is important for zeroing. The unloaded DMS sensor can be zeroed using the tare function. The value displayed in the monitor can also be transferred directly to the offset register. Then the monitor value displays zero. When using the tare function with the help of an input, the value is only saved temporarily; after a new power-up, it must be zeroed again.

If the tare function is operated by using the OS or serial communication, the value can also be saved by using a Store Eeprom.

After that the DMS sensor is loaded with a reference weight, a new monitor value is displayed which corresponds to the reference weight. This value can now be converted into units for the analog and digital outputs. Based on the monitor value, you can determine the resolution in relation to the reference weight and then also optimize parameter Gain. With changing of parameter Gain, parameter Offset must also be adjusted.

When combining the two channels with a factorized calculation (Analog Source = 4), the single bridge voltage can be multiplied by parameter Multiplier and divided by parameter Divisor. If different DMS sensors are used, they can be adjusted to each other by factorization.

Example for channel 1 and 2:

Monitor value Page 0 <4:	25 at Offset = 0, DMS 1 unloaded				
Monitor value Page 0 <4:	0 at Offset = 25, DMS 1 unloaded and zeroed				
Monitor value Page 0 <5:	70 at Offset = 0, DMS 2 unloaded				
Monitor value Page 0 <5:	0 at Offset = 70, DMS 2 unloaded and zeroed				
Monitor value Page 0 <4:	55 at Offset = 25, DMS 1 loaded with reference weight and zeroed				
Monitor value Page 0 <5:	110 at Offset = 70, DMS 2 loaded with reference weight and zeroed				
DMS sensor 2 has twice the	e sensitivity of DMS sensor 1. Both are operated with the same voltage.				
Parameter Multiplier 2 and Divisor 2 could now be set to halve the sensor value 2. Checking of the					
calculation can be done by Monitor Page 0 with the code position <8, <9. Here an addition of both					
values takes place, by chang	ging parameter Polarity also a subtraction can take place.				
When combining the two channels with a single conversion (Analog Source = 5), the single bridge					
voltages can first be converted to sensor units and then added together. Parameter Multiplier and					
parameter Divisor are not used. If different DMS sensors are used, they can be adjusted to each other					
by individual conversion.	by individual conversion.				

6.5. Digital Input

The digital inputs are used to trigger functions. Here the zeroing can be done by an input. A reset of the self-holding of an output, as well as the activation of the analog output with a set value is also possible.

6.6. Analog Output

In the analog output menu, the source is set by parameter Analog Source. Parameter Analog Mode can be used to differentiate between different voltage ranges and current ranges. (+/-10V, 0V-10V, 0mA-20mA or also 4mA-20mA)

Parameter Analog Start defines the source value at 0V or 0mA or also 4mA. Parameter Analog End defines the source value at 10V or 20mA.

Parameter Analog Set defines a source value within the range from start to end that can be controlled by a digital input. Thus the analog output can also be controlled directly by the interface.

6.7. Digital Output

The digital outputs are used for the detection of states. For example, if the force exceeds a certain value, the output is set. Shortfall can also be detected. The functions can be used for forces in one direction, or in both directions.

A hysteresis can also be programmed, as well as a self-holding whose reset is only triggered again by an input.

6.8. Additional Optional Settings

6.8.1. Examination of the Read Analog Values

By using parameter Min Max Channel, different read-in values can be examined for their scatter. Setting the parameter Reset Min Max = 1 resets minimum and maximum values. Then parameter Reset Min Max must be set to 0 again. The deviations can be made visible by Monitor Page 0 with the code <6 and <7. If the values fluctuate too much, the sampling time or the filter must be increased.

6.8.2. Setting of the RS-485 Serial Interface

By using parameter Serial Mode, the protocol of the RS-485 interface can be used to set. With the setting Serial Mode = 0 the interface works with the Lecom protocol and with the parameter setting options RS Unit No., RS Baud rate and RS Format. If the Serial Mode parameter is set to 1, 2 or 3, the Modbus protocol is used, the baud rate remains adjustable by parameter RS Baud Rate, where the format is set to 8 data bits, Parity Even (=1), Parity Odd (=2) or Parity None (=3) with 1 stop bit. Different functions can be sent by Modbus or Lecom. The Modbus address can be set by parameter Modbus address. Furthermore a modbus CRC calculator is available. (parameter CRC Reset and Byte)

6.9. Calibration of Analog Output

Both analog outputs can be calibrated individually. The set function is used for this purpose. An unconnected input can control the set values at the analog outputs by setting the parameters Input Config = 0 and Input Function = 11. The set values is set to 0V (analog set = analog start). By using parameter Vout Offset 1 you can now fine-tune the offset of analog output 1. After that, the gain of analog output 1 can be fine-tuned. For this purpose, the set value is set to 10V, and then the value can be corrected by parameter Vout Gain 1, so that exactly 10000mV are measured. (analog set = analog end)

6.10. Calibration of MEA Readback

Both analog readbacks of the bridge voltage can be calibrated. For this, an external multimeter must be connected and then compared in relation to the readback via monitor. A calibration is possible by using parameter Vin Mea. Gain. An adjustment is necessary to increase the accuracy of the calculated resistance value and when using the conversion in sensor units. The setting must be done after the parameter Supply was selected.

6.11. Calibration of Analog Input BRI / DMS

Both analog inputs can only be calibrated in relation to the temperature. These settings linearly correct the offset and gain depending on the temperature.

6.11.1. Calibration of Input Stage

Using different parameters, the input stage can be optimized in relation to the temperature. Using parameter Temp. Sim., the temperature for the unit can be simulated.

This makes it easy to determine the influences of individual variables. First the offset correction must take place and after that the gain correction.

Example Offset correction:

Voltage at Input 1	0 mV
Parameter In Temp. C. = 1	Temperature compensation of Offset
Parameter Temp. Sim. = 1	Simulation active
Parameter Temp. Sim. Value = 1412	Simulation with -20°
Monitor Page 5 code <0	-20 (read back temperature)
Parameter Gain 1 = 0	Gain = 0 selected
Parameter Vin T. Offset 1 = 1.0000	Standard
Parameter Temp. Offset I1 = 0	Inversion
Monitor Page 5 code ;8	-8 (read back correction at 40K)
Monitor Page 5 code <1	Offset changes e.g.from 21 to 29 at In Temp.C = 1/3

By looking at the monitor page 5 code <1 you can directly see the influence with and without temperature offset compensation by switching. The correction is zero at 20° and is the reference point. The offset is reduced by 8 increments at -20°. At 40K the offset is corrected by 8 increments. By changing the parameter Temp. Offset I1 = 1, the code ;8 does not change, but at >1. Here the offset is then increased by 8 increments. The Gain parameter also affects the calculation, with Gain = 4, -132 increments are compensated for instead of -8. By parameter Vin T. Offset 1 the 8 increments can be increased or decreased.

The following relationship applies:

Correction = (Temperature -20) x (Gain + 1) x (Gain + 1) x 2063 / Vin T. Offset Correction (Temperature = -20° , Gain = 0, Vin T. Offset = 1.0000) = $-40 \times 2063 / 10000$ = -8With the standard settings, there is sufficient optimization for the input stage.

Example Gain correction:

Voltage at Input 1	5 mV
Parameter In Temp. C. = 0	Temperature compensation of Offset and Gain
Parameter Temp. Sim. = 1	Simulation active
Parameter Temp. Sim. Value = 1412	Simulation with -20°
Monitor Page 5 code <0	-20 (Read back temperature)

Parameter Gain 1 = 0 Parameter Vin T. Gain 1 = 1.00000 Parameter Temp. Gain I1 = 0 Monitor Page 5 code <3 Monitor Page 5 code <5 Gain = 0 selected Standard Inversion (Read back correction at 40K) Gain changes by factor at In Temp.C = 0/3

The following relationship applies:

Correction factor = ((Temperature -20) x (Gain + 1) + 100000) / Vin T. Gain Correction (Temperature = -20° , Gain = 0, Vin T. Gain = 1.00000) = -40 + 100000 / 100000 = 0,9996With the standard settings, there is sufficient optimization for the input stage.

6.11.2. Calibration of Input Stage and of DMS Sensor

Using different parameters, the input stage and the DMS can be optimized in relation to the temperature. Condition is that the DMS and the unit are exposed to approximately the same temperatures. Here, for example, the temperature-dependent offset of the DMS can be taken into account in addition to the input stage. First the offset correction must take place and after that the gain correction.

6.11.3. Monitor Codes for Calibration

Calibration can be simplified by using of different monitor codes.

Monitor Page 5 code ;8 Monitor Page 5 code ;9 Monitor Page 5 code <0 Monitor Page 5 code <1 Monitor Page 5 code <2 Monitor Page 5 code <3 Monitor Page 5 code <4 Monitor Page 5 code <1	Read back offset correction input 1 Read back offset correction input 2 Read back temperature Input 1 with offset compensation Input 2 with offset compensation Factor of gain compensation of input 1 Factor of gain compensation of input 2 Input 1 with offset, offset and gain compensation
Monitor Page 5 code <1 Monitor Page 5 code <2	Input 2 with offset, offset and gain compensation

7. Input Functions

7.1. Tara 1

The Tara 1 function zeroes the bridge voltage of DMS sensor 1. The current measured value is transferred to parameter Offset 1.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1	If Input X Config = 0 is set, the command is	The status of the input can be read
	Input X Function = 1	triggered on a "low" state at input X	in the OS Input field
Lecom	Code 66 (dec)	Release : 04 31 31 02 36 36 30 03 33	If 1 is written at code 66, the
		Set : 04 31 31 02 36 36 31 03 32	command is set.
		(Unit no. 11, command in hex)	
Modbus	Cell FF00 (hex)	Release : 07 06 FF 00 00 00 B9 B8	If 1 is written to cell FF00, the
		Set : 07 06 FF 00 00 01 78 78	command is set.
		(Modbus address = 7, command in hex)	

7.2. Tara 2

The Tara 2 function zeroes the bridge voltage of DMS sensor 2. The current measured value is transferred to parameter Offset 2.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1 Input X Function = 2	If Input X Config = 0 is set, the command is triggered on a "low" state at input X	The status of the input can be read in the OS Input field
Lecom	Code 65 (dec)	Release : 04 31 31 02 36 35 30 03 30 Set : 04 31 31 02 36 35 31 03 31 (Unit no. 11, command in hex)	If 1 is written at code 65, the command is set.
Modbus	Cell FF02 (hex)	Release : 07 06 FF 02 00 00 18 78 Set : 07 06 FF 02 00 01 D9 B8 (Modbus address = 7, command in hex)	If 1 is written to cell FF02, the command is set.

7.3. Tara 12

The Tara 12 function zeroes the bridge voltage of DMS sensor 1 and 2. The current measured value is transferred to parameter Offset 1 and 2.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1 Input X Function = 3	If Input X Config = 0 is set, the command is triggered on a "low" state at input X	The status of the input can be read in the OS Input field
Lecom	Code 64 (dec)	Release : 04 31 31 02 36 34 30 03 31 Set : 04 31 31 02 36 34 31 03 30 (Unit no. 11, command in hex)	If 1 is written at code 64, the command is set.
Modbus	Cell FF04 (hex)	Release : 07 06 FF 04 00 00 F8 79 Set : 07 06 FF 04 00 01 39 B9 (Modbus address = 7, command in hex)	If 1 is written to cell FF04, the command is set.

7.4. Lock 1

The Lock 1 function releases the digital output 1 again when the self-holding has been activated. For this purpose, parameter Output Lock of the respective output must be switched active.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1	If Input X Config = 0 is set, the command is	The status of the input can be read
	Input X Function = 4	triggered on a "low" state at input X	in the OS Input field
Lecom	Code 63 (dec)	Release : 04 31 31 02 36 33 30 03 36	If 1 is written at code 63, the
		Set : 04 31 31 02 36 33 31 03 37	command is set.
		(Unit no. 11, command in hex)	
Modbus	Cell FF06 (hex)	Release : 07 06 FF 06 00 00 59 B9	If 1 is written to cell FF06, the
		Set : 07 06 FF 06 00 01 98 79	command is set.
		(Modbus address = 7, command in hex)	

7.5. Lock 2

The Lock 2 function releases the digital output 2 again when the self-holding has been activated. For this purpose, parameter Output Lock of the respective output must be switched active.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1	If Input X Config = 0 is set, the command is	The status of the input can be read
	Input X Function = 5	triggered on a "low" state at input X	in the OS Input field
Lecom	Code 62 (dec)	Release : 04 31 31 02 36 32 30 03 37	If 1 is written at code 62, the
		Set : 04 31 31 02 36 33 31 03 36	command is set.
		(Unit no. 11, command in hex)	
Modbus	Cell FF08 (hex)	Release : 07 06 FF 08 00 00 38 7A	If 1 is written to cell FF08, the
		Set : 07 06 FF 08 00 01 F9 BA	command is set.
		(Modbus address = 7, command in hex)	

7.6. Lock 3

The Lock 3 function releases the digital output 3 again when the self-holding has been activated. For this purpose, parameter Output Lock of the respective output must be switched active.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1	If Input X Config = 0 is set, the command is	The status of the input can be read
	Input X Function = 6	triggered on a "low" state at input X	in the OS Input field
Lecom	Code 61 (dec)	Release : 04 31 31 02 36 31 30 03 34	If 1 is written at code 61, the
		Set : 04 31 31 02 36 31 31 03 35	command is set.
		(Unit no. 11, command in hex)	
Modbus	Cell FFOA (hex)	Release : 07 06 FF 0A 00 00 99 BA	If 1 is written to cell FF0A, the
		Set : 07 06 FF 0A 00 01 58 7A	command is set.
		(Modbus address = 7, command in hex)	

7.7. Lock 4

The Lock 4 function releases the digital output 4 again when the self-holding has been activated. For this purpose, parameter Output Lock of the respective output must be switched active.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1	If Input X Config = 0 is set, the command is	The status of the input can be read
	Input X Function = 7	triggered on a "low" state at input X	in the OS Input field
Lecom	Code 60 (dec)	Release : 04 31 31 02 36 30 30 03 35	If 1 is written at code 60, the
		Set : 04 31 31 02 36 30 31 03 34	command is set.
		(Unit no. 11, command in hex)	
Modbus	Cell FFOC (hex)	Release : 07 06 FF 0C 00 00 79 BB	If 1 is written to cell FFOC, the
		Set : 07 06 FF 0C 00 01 B8 7B	command is set.
		(Modbus address = 7, command in hex)	

7.8. Lock 1-4

The Lock 1-4 function releases the digital output 1-4 again when the self-holding has been activated. For this purpose, parameter Output Lock of all outputs (or less) must be switched active.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1	If Input X Config = 0 is set, the command is	The status of the input can be read
	Input X Function = 8	triggered on a "low" state at input X	in the OS Input field
Lecom	Code 59 (dec)	Release : 04 31 31 02 35 39 30 03 3F	If 1 is written at code 59, the
		Set : 04 31 31 02 35 39 31 03 3E	command is set.
		(Unit no. 11, command in hex)	
Modbus	Cell FFOE (hex)	Release : 07 06 FF 0E 00 00 D8 7B	If 1 is written to cell FF0E, the
		Set : 07 06 FF 0E 00 01 19 BB	command is set.
		(Modbus address = 7, command in hex)	

7.9. Set 1

The Set 1 function sets the analog output 1 to the value of the parameter Analog Set 1.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1	If Input X Config = 0 is set, the command is	The status of the input can be read
	Input X Function = 9	triggered on a "low" state at input X.	in the OS Input field
Lecom	Code 58 (dec)	Release : 04 31 31 02 35 38 30 03 3E	If 1 is written at code 58, the
		Set : 04 31 31 02 35 38 31 03 3F	command is set.
		(Unit no. 11, command in hex)	
Modbus	Cell FF10 (hex)	Release : 07 06 FF 10 00 00 B8 7D	If 1 is written to cell FF10, the
		Set : 07 06 FF 10 00 01 79 BD	command is set.
		(Modbus address = 7, command in hex)	

7.10. Set 2

The Set 2 function sets the analog output 2 to the value of the parameter Analog Set 2.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1	If Input X Config = 0 is set, the command is	The status of the input can be read
	Input X Function = 10	triggered on a "low" state at input X.	in the OS Input field
Lecom	Code 57 (dec)	Release : 04 31 31 02 35 37 30 03 31	If 1 is written at code 57, the
		Set : 04 31 31 02 35 37 31 03 30	command is set.
		(Unit no. 11, command in hex)	
Modbus	Cell FF12 (hex)	Release : 07 06 FF 12 00 00 19 BD	If 1 is written to cell FF12, the
		Set : 07 06 FF 12 00 01 D8 7D	command is set.
		(Modbus address = 7, command in hex)	

7.11. Set 12

The Set 12 function sets the analog output 1 and 2 to the value of the parameter Analog Set 1 and 2.

Tiggering	Parameter	Comment	Addition
Input	Input X Config = 0/1	If Input X Config = 0 is set, the command is	The status of the input can be read
	Input X Function = 11	triggered on a "low" state at input X.	in the OS Input field
Lecom	Code 56 (dec)	Release : 04 31 31 02 35 36 30 03 30	If 1 is written at code 56, the
		Set : 04 31 31 02 35 36 31 03 31	command is set.
		(Unit no. 11, command in hex)	
Modbus	Cell FF14 (hex)	Release : 07 06 FF 14 00 00 F9 BC	If 1 is written to cell FF14, the
		Set : 07 06 FF 14 00 01 38 7C	command is set.
		(Modbus address = 7, command in hex)	

8. Output Functions

All output functions can be inverted by parameter Output Polarity. A self-holding can be activated by parameter Output Lock. The status of the outputs is directly visible in the Outputs field of the OS. (white = low, blue = high)

8.1. Output Function = 1

If Output Source > Output Preselec, the output is set high. A programmable hysteresis in % prevents signal changes in case of movements around the switching point. The output is set to low when the value is decreased by the hysteresis.

8.2. Output Function = 2

If the amount of Output Source > Output Preselec, the output is set high. A programmable hysteresis in % prevents signal changes in case of movements around the switching point. The output is set to low when the value is decreased by the hysteresis.

8.3. Output Function = 3

If Output Source < Output Preselec, the output is set high. A programmable hysteresis in % prevents signal changes in case of movements around the switching point. The output is set to low when the value is increased by the hysteresis.

8.4. Output Function = 4

If the amount of Output Source < Output Preselec, the output is set high. A programmable hysteresis in % prevents signal changes in case of movements around the switching point. The output is set to low when the value is increased by the hysteresis.

8.5. Output Function = 5

If Output Source is outside the range of Output Preselec +/- hysteresis, the output is set high.

8.6. Output Function = 6

If the amount of Output Source is outside the range of Output Preselec +/- hysteresis, the output is set high.

8.7. Output Function = 7

If a DMS error is detected, the output is set. A DMS error is output in case of overcurrent at the DMS supply and in case of an incorrect DMS resistance.

Example:

Output Function = 1 Output Presel. = 2000, Output Hysteresis = 10 It results with 2000 x 10/100 = 200 The output is set to high when greater than 2000, and is set to low when less than 1800.

Output Function = 5 Output Presel. = 2000, Output Hysteresis = 10 It results with 2000 x 10/100 = 200The output is set to high in the range 1800 to 2200, outside it is set to low.
9. Lecom Protocol

If you communicate with the unit by the Lecom protocol, you have full read and write access to all internal parameters, states and actual values. The counter uses the Lecom protocol according to DIN ISO 1745. The serial access codes for all parameters of the unit are specified in the parameter list.

9.1. Lecom Read

To request data from the unit, the following request string must be sent:

EOT		AD1	AD2	C1	C2	ENQ				
EOT = control character (Hex 04)										
AD1 = unit address, High Byte										
AD2 = unit address, Low Byte										
C1 = code to be read, High Byte										
C2 = code to be read, Low Byte										
ENQ =	: CO	ntrol ch	naracter	(Hex	05)					

If the current differential counter, for example, should be read (code position: 1) with the unit address 11 (parameter RS Unit No.), then the detailed request string is:

ASCII-Code:	EOT	1	1	•	1	ENQ
Hexadecimal:	04	31	31	3A	31	05
Binary:	0000 0100	0011 0001	0011 0001	0011 1010	0011 0001	0000 0101

If the request is correct the answer of the unit is:

STX	C1	ETX	BCC							
STX = control character (Hex 02)										
C1 = code to be read, High Byte										
C2 = code to be read, Low Byte										
xxxxx = data to be read										
ETX = control character (Hex 03)										
BCC =	= bloc	k che	eck character							

Leading zeros are <u>not</u> transferred. The Block Check Character (BCC) is formed by an EXCLUSIVE-OR function of all characters from C1 to ETX (each inclusive).

9.2. Lecom Write

To describe a parameter, the following string must be sent:

EOT	AD1	AD2	STX	C1	C2	X X X X X X X X	ETX	BCC	
EOT =	= contr	ol char	acter (Hex	04)				
AD1 :	AD1 = unit address, High Byte								
AD2	= unit a	addres	s, Low	Byte	;				
STX =	STX = control character (Hex 02)								
C1 =	= code	to be c	lescrib	ed, F	ligh I	Byte			
C2 =	= code	to be c	lescrib	ed, L	.ow E	Byte			
XXXXX	xxxxx = sent parameter value								
ETX = control character (Hex 03)									
BCC :	= block	check	chara	cter					

The Block Check Character (BCC) is formed by an EXCLUSIVE-OR function of all characters from C1 to ETX (each inclusive). If the reception is correct, the unit responds with the control character ACK, otherwise with NAK or no message. A newly sent parameter is first stored temporarily in the unit without influencing the function. Thus, it is possible to prepare several new parameters in the background while the unit is running.

If the transferred parameters are to be activated, the value "1" must be sent to the "Activate Data" register. This will activate all changed parameters simultaneously.

If the new parameters are to remain permanently stored even after the power supply has been switched off, additionally the value "1" must be sent to the "Store EEProm" register. Thus, all new data are also stored in the unit. Otherwise, the unit will return to the original parameter set after power up.

Function	Code
Command Activate Data	67
Command Store EEProm	68

Both commands react dynamically, i.e. it is sufficient to send the value "1" to the corresponding code. After execution, the command is automatically reset.

Activate Data on unit 11:

ASCII	EOT	1	1	STX	6	7	1	ETX	BCC
Hex	04	31	31	02	36	37	31	03	33

Store EEProm on unit 11:

ASCII	EOT	1	1	STX	6	7	1	ETX	BCC
Hex	04	31	31	02	36	38	31	03	3C

10. Modbus Protokoll

If you communicate with the unit by the Modbus protocol, you have full read and write access to all internal parameters, states and actual values. The DM uses the Modbus RTU protocol. The serial access codes for all parameters of the unit are listed in the parameter list. With the help of USB access the parameter Serial Mode can be changed from Lecom to Modbus. The parameter Serial Baud Rate refers to both protocols. With the parameter Modbus Address the Modbus unit address can be set. Allowed here are the settings 1... 247.

Attention: The Modbus checksum sequence L/H is just reversed to the data.

The DM supports the function Reading Holding Register (R, FCT = 03), the function Report Slave ID (R, FCT = 11) and the function Preset Single Register (W, FCT = 06).

10.1. Modbus Read

To request data from the unit, the following request string must be sent:

ADR	FCT	STH	STL	CRH	CRL	CRCL	CRCH			
	A	DR = MB	addres	s (parai	neter)					
	FCT = function (Hex 03)									
STH = start address, High Byte										
	ST	L = start	addres	ss, Low	Byte					
	CF	RH = num	nber of	register	s High	Byte				
	CRL = number of registers, Low Byte									
	CRCL = checksum CRC16, Low Byte									
	CF	RCH = ch	ecksum	n CRC16	, High E	Byte				

For example, if a parameter (Modbus ST = 00 0C (hex), 32 Bit = 2 Word -> Modbus CRC = 00 02) is to be read from the unit with address 07, the detailed request string is:

Designation:	ADR	FCT	STH	STL	CRH	CRL	CRCL	CRCH
Hexadecimal:	07	03	00	0C	00	02	04	6E
Binary:	0000	0000	0000	0000	0000	0000	0000	0110
	0111	0011	0000	1100	0000	0010	0100	1110

The unit will answer if the request is correct, for example:

ADR	FCT	СВ	DATA	CRCL	CRCH					
ADR = MB address (parameter)										
FCT = function (Hex 03)										
CB =	numbe	er of I	oytes, he	ere 4 by	tes					
DATA = data, 4 bytes (32 Bit)										
CRCx = check sum CRC16										

Designation:	ADR	FCT	СВ	DATA	CRCL	CRCH
Hexadecimal:	07	03	04	00 00 OF A0	99	BB
Binary:	0000	0000	0000		1001	1011
	0111	0011	0100		1001	1011

The data above corresponds to a read out of the parameter of 4000.

-The function Reading Holding Registers supports 2 Word (32-bit) accesses to the direct parameter addresses (0x0, 0x4, 0x8, 0xC ..)

- The function Reading Holding Register also supports more than 2 Word accesses to the direct parameter addresses (0x0, 0x4, 0x8, 0xC ...) for area readout.

10.2. Modbus Write

To describe a parameter, the following request string must be sent:

ADR	FCT	REH	REL	DAH	DAL	CRCL	CRCH				
	ADR = MB address (parameter)										
FCT = Function (Hex 06)											
REH = register address, High Byte											
	REL = register address, Low Byte										
	DA	H = dat	a High I	Byte							
	DA	L = data	a Low B	yte							
	CRCL = check sum CRC16, Low Byte										
	CR	CH = ch	eck sun	n CRC16	6, High	Byte					

If for example the unit shall be written with the parameter (Modbus ST = 00 0E, 000C (hex), Modbus DA = 00 01, 00 01), then the detailed request string for the High Word Register is:

Designation:	ADR	FCT	REH	REL	DAH	DAL	CRCL	CRCH
Hexadecimal:	07	06	00	0E	00	01	29	AF
Binary:	0000	0000	0000	0000	0000	0000	0010	1010
	0111	0011	0000	1110	0000	0001	1001	1111

The unit will answer if the request is correct:

ADR	FCT	REG	DATA	CRCL	CRCH			
ADR = MB address (parameter)								
FCT =	FCT = function (Hex 06)							
REG =	= regis	ter ado	dress					
DATA = data								
CRCx	CRCx = check sum CRC16							

Designation:	ADR	FCT	REG	DATA	CRCL	CRCH
Hexadecimal:	07	06	00 OE	00 01	29	AF
Binary:	0000	0000			0010	1010
	0111	0110			1001	1111

String for writing the Low Word Register:

Designation:	ADR	FCT	REH	REL	DAH	DAL	CRCL	CRCH
Hexadecimal:	07	06	00	0C	00	01	88	6F
Binary:	0000	0000	0000	0000	0000	0000	1000	0110
	0111	0011	0000	0110	0000	0001	1000	1111

The data corresponds to a written value of the parameter of 65537.

(00 04 00 02 hex). The newly sent parameter is first stored temporarily in the unit, without influencing the function. Thus, it is possible to prepare several new parameters in the background while the unit is running.

If the transferred parameters are to be activated, an "Activate Data" must be sent to the unit. This will activate all changed parameters simultaneously.

To execute an "Activate Data", the following string must be sent:

Designation:	ADR	FCT	REH	REL	DAH	DAL	CRCL	CRCH
Hexadecimal:	07	06	FF	FE	00	01	19	88
Binary:	0000	0000	1111	1111	0000	0000	0001	1000
	0111	0011	1111	1110	0000	0001	1001	1000

It must be ensured that a range violation of the parameter does not cause it to be transferred to the buffer. The permissible parameter ranges can be taken from the parameter description.

If the new parameters are to remain permanently stored even after the power supply is switched off, an additional "Store EEProm" must be sent to the unit. This means that all new data is also stored in the unit. Otherwise, the unit will return to the original parameter set after power up.

To execute a "Store EEProm" the following string must be sent:

Designation:	ADR	FCT	REH	REL	DAH	DAL	CRCL	CRCH
Hexadecimal:	07	06	FF	FE	00	02	34	49
Binary:	0000	0000	1111	1111	0000	0000	0011	0100
	0111	0011	1111	1110	0000	0010	0100	1001

With negative parameter values such as -10000, the value must be divided into two 16-bit values and transmitted with two write accesses. (-10000 dec = FFFF D8F0 hex)

An ID can be requested to identify the unit:

To request an ID, the following string must be sent:

Designation:	ADR	FCT	CRCL	CRCH
Hexadecimal:	07	11	C3	8C
Binary:	0000	0001	1100	1000
	0111	0001	0011	1100

The answer of the unit is if the request is correct:

Designation:	ADR	FCT	BYTE	ID	RUN	DATA	CRCL	CRCH
Hexadecimal:	07	11	12	01	FF	44 4D 32 32 32 20 20 20	30	05
						44 4D 32 32 32 30 31 41		
Binary:	0000	0001	0001	0000	1111		0011	0000
	0111	0000	0020	0001	1111		0000	0101

44 4D 32 32 32 30 31 41 corresponds in ASCII format : DM22201A

Here the unit header, which is also visible in the OS, is displayed. It identifies the unit (DM222) with software version (01A) and, if available, the special number.

Splitting of the memory area

Memory address (dec)	MODBUS-FCT	R-access	Read / Write	Note
0459	03 (R)	2-228 Words	R/W	Parameter area
0456 (32 Bit)	06 (W)	1 Word		
10001127	03 (R)	2-64 Words	Read only	Variable area
10001124 (32 Bit)				
FF00 - FF14	06 (W)	1 Word	Write only	Command area
FFFE (hex, 16 Bit)	06 (W)	1 Word	Write only	

11. Modbus CRC Calculation

Parameter Modbus CRC Reset is used to reset the CRC Calulator. If Modbus CRC Reset = 0, the CRC Calculator is set to FFFF in the monitor field (Page 1; code <4). If Modbus CRC Reset = 1, the CRC value can be calculated with every Modbus byte.

Parameter Modbus CRC Byte is used to enter the bytes for the CRC calculation.

Into this memory address the Modbus bytes can be transferred one after the other and then the CRC checksum can be read out in the monitor field (Page 1, code <4).

Using the OS:

For the Modbus command 0x07 0x11 the checksum shall be determined. First the Serial Page parameter should be set to 1 to select Page 1.

- Modbus CRC Reset = 0, Modbus Byte = 7dec
- -> Monitor Page 1 Code <4 = 0x0000 FFFF (reset)
- Modbus CRC Reset = 1, Modbus Byte = 7dec
- -> Monitor Page 1 Code <4 = 0x0000 82FE
- Modbus CRC Reset = 1, Modbus Byte = 17dec
- -> Monitor Page 1 Code <4 = 0x0000 8CC3

(Press OS Transmit change)

(Press OS Transmit change)

(Press OS Transmit change)

Now the command can be set together

-> 07 11 C3 8C

Note that with Modbus the CRC sends first the LByte and then the HByte, therefore byte swapping is necessary.

12. Parameter-List

No.	Parameter	Min — value	Max — value	Default	Places	Decimal places	Lecom Code	Modbus Code
	Sensor 1 Menu							
000	Supply 1	3	10	5	2	0	00	L000/H002
001	Gain 1	0	4	0	1	0	01	L004/H006
002	Sampling 1	0	12	0	2	0	02	L008/H00A
003	Offset 1	-10000	+10000	0	85	0	03	LOOC/HOOE
004	Resistor 1	0	10000	350	5	0	04	L010/H012
005	Sensitivity 1	0.100	20.000	1.000	5	3	05	L014/H016
006	Voltage 1	1	99999	1000	5	0	06	L018/H01A
007	Digits 1	1	99999	1000	5	0	07	L01C/H01E
800	Correction 1	0.900	1.100	1.000	4	3	08	L020/H022
009	Polarity 1	0	1	0	1	0	09	L024/H026
010	Reserved	0	10000	1000	5	0	AO	L028/H02A
	Sensor 2 Menu							
011	Supply 2	3	10	5	2	0	A1	L02C/H02E
012	Gain 2	0	4	0	1	0	A2	L030/H032
013	Sampling 2	0	12	0	2	0	A3	L034/H036
014	Offset 2	-10000	+10000	0	85	0	A4	L038/H03A
015	Resistor 2	0	10000	350	5	0	A5	L03C/H03E
016	Sensitivity 2	0.100	20.000	1.000	5	3	A6	L040/H042
017	Voltage 2	1	99999	1000	5	0	A7	L044/H046
018	Digits 2	1	99999	1000	5	0	A8	L048/H04A
019	Correction 2	0.900	1.100	1.000	4	3	A9	L04C/H04E
020	Polarity 2	0	1	0	1	0	BO	L050/H052
021	Reserved	0	10000	1000	5	0	B1	L054/H056
	Combination Menu							
022	Multiplier 1	0	9.999	0.000	4	3	B2	L058/H05A
023	Divisor 1	1	9.999	1.000	4	3	B3	L05C/H05E
024	Multiplier 2	0	9.999	0.000	4	3	B4	L060/H062
025	Divisor 2	1	9.999	1.000	4	3	B5	L064/H066
026	Reserved	0	10000	1000	5	0	B6	L068/H06A
027	Reserved	0	10000	1000	5	0	B7	L06C/H06E
	Digital Input Menu							
028	Input 1 Config	0	1	0	1	0	B8	L070/H072
029	Input 1 Function	0	11	0	2	0	B9	L074/H076
030	Input 2 Config	0	1	0	1	0	CO	L078/H07A
031	Input 2 Function	0	11	0	2	0	C1	L07C/H07E
032	Input 3 Config	0	1	0	1	0	C2	L080/H082
033	Input 3 Function	0	11	0	2	0	C3	L084/H086
034	Input 4 Config	0	1	0	1	0	C4	L088/H08A
035	Input 4 Function	0	11	0	2	0	C5	L08C/H08E
036	Reserved	0	10000	1000	5	0	C6	L090/H092
037	Reserved	0	10000	1000	5	0	C7	L094/H096

No.	Parameter	Min — value	Max — value	Default	Places	Decimal places	Lecom Code	Modbus Code
	Analog Output 1 Menu							
038	Analog Source 1	0	5	0	1	0	C8	L098/H09A
039	Analog Mode 1	0	3	1	1	0	C9	L09C/H09E
040	Analog Start 1	-99999	99999	0	85	0	DO	LOAO/HOA2
041	Analog End 1	-99999	99999	10000	85	0	D1	L0A4/H0A6
042	Analog Set 1	-10000	10000	0	85	0	D2	LOA8/HOAA
043	Reserved	0	10000	1000	5	0	D3	LOAC/HOAE
	Analog Output 2 Menu							
044	Analog Source 2	0	5	0	1	0	D4	LOBO/HOB2
045	Analog Mode 2	0	3	1	1	0	D5	L0B4/H0B6
046	Analog Start 2	-99999	99999	0	85	0	D6	LOB8/HOBA
047	Analog End 2	-99999	99999	10000	85	0	D7	LOBC/HOBE
048	Analog Set 2	-10000	10000	0	85	0	D8	LOCO/HOC2
049	Reserved	0	10000	1000	5	0	D9	LOC4/HOC6
	Digital Output Menu							
050	Output Polarity	0	15	0	2	0	EO	LOC8/HOCA
051	Output Lock	0	15	0	2	0	E1	LOCC/HOCE
052	Output Source 1	0	3	0	1	0	E2	LODO/HOD2
053	Output Function 1	0	7	0	1	0	E3	LOD4/HOD6
054	Output Hysteresis 1	0	100	0	3	0	E4	LOD8/HODA
055	Output Preselec. 1	-9999	9999	1000	84	0	E5	LODC/HODE
056	Output Source 2	0	3	0	1	0	E6	LOEO/HOE2
057	Output Function 2	0	7	0	1	0	E7	L0E4/H0E6
058	Output Hysteresis 2	0	100	0	3	0	E8	LOE8/HOEA
059	Output Preselec. 2	-9999	9999	1000	84	0	E9	LOEC/HOEE
060	Output Source 3	0	3	0	1	0	FO	LOFO/HOF2
061	Output Function 3	0	7	0	1	0	F1	LOF4/HOF6
062	Output Hysteresis 3	0	100	0	3	0	F2	LOF8/HOFA
063	Output Preselec. 3	-9999	9999	1000	84	0	F3	LOFC/HOFE
064	Output Source 4	0	3	0	1	0	F4	L100/H102
065	Output Function 4	0	7	0	1	0	F5	L104/H106
066	Output Hysteresis 4	0	100	0	3	0	F6	L108/H10A
067	Output Preselec. 4	-9999	9999	1000	84	0	F7	L10C/H10E
068	Reserved	0	10000	1000	5	0	F8	L110/H112
069	Reserved	0	10000	1000	5	0	F9	L114/H116
	Modbus Menu							
070	Modbus Address	1	247	1	3	0	GO	L118/H11A
071	Modbus CRC Reset	0	1	0	1	0	G1	L11C/H11E
072	Modbus CRC Byte	0	255	0	3	0	G2	L120/H122
073	Reserved	0	10000	1000	5	0	G3	L124/H126

No.	Parameter	Min — value	Max — value	Default	Places	Decimal places	Lecom Code	Modbus Code
	Serial Menu					•		
074	USB Unit Nr.	11	11	11	2	0	90	L128/H12A
075	USB Baud Rate	0	0	0	1	0	91	L12C/H12E
076	USB Format	0	0	0	1	0	92	L130/H132
077	Serial Page	0	5	0	1	0	~0	L134/H136
078	Serial Mode	0	3	0	1	0	G4	L138/H13A
079	RS Unit Nr.	11	99	11	2	0	G5	L13C/H13E
080	RS Baud Rate	0	10	10	2	0	G6	L140/H142
081	RS Format	0	2	0	1	0	G7	L144/H146
082	Reserved	0	10000	1000	5	0	G8	L148/H14A
083	Reserved	0	10000	1000	5	0	G9	L14C/H14E
	General Menu							
084	Filter	0	9	0	1	0	HO	L150/H152
085	Min Max Channel	0	5	0	1	0	H1	L154/H156
086	Reset Min Max	0	1	0	1	0	H2	L158/H15A
087	Monitor Switch	0	1	0	1	0	H3	L15C/H15E
088	Reserved	0	10000	1000	5	0	H4	L160/H162
089	Reserved	0	10000	1000	5	0	H5	L164/H166
	Adjustment Menu							
090	Vout Offset 1	-30	30	0	82	0	H6	L168/H16A
091	Vout Gain 1	0.9990	1.0010	1.0000	5	4	H7	L16C/H16E
092	lout Offset 1	-30	30	0	82	0	H8	L170/H172
093	lout Gain 1	0.9990	1.0010	1.0000	5	4	H9	L174/H176
094	Vout Offset 2	-30	30	0	82	0	10	L178/H17A
095	Vout Gain 2	0.9990	1.0010	1.0000	5	4	1	L17C/H17E
096	lout Offset 2	-30	30	0	82	0	12	L180/H182
097	lout Gain 2	0.9990	1.0010	1.0000	5	4	13	L184/H186
098	Out Temp. C.	0	1	0	1	0	4	L188/H18A
099	Vin T. Offset 1	0.5000	1.5000	1.0000	5	4	15	L18C/H18E
100	Vin T. Offset 2	0.5000	1.5000	1.0000	5	4	16	L190/H192
101	Vin T. Gain 1	0.90000	1.10000	1.00000	6	5	17	L194/H196
102	Vin T. Gain 2	0.90000	1.10000	1.00000	6	5	18	L198/H19A
103	In Temp. C.	0	3	0	1	0	19	L19C/H19E
104	Vin Mea. Gain 1	0.8000	1.2000	1.0000	5	4	JO	L1A0/H1A2
105	Vin Mea. Gain 2	0.8000	1.2000	1.0000	5	4	J1	L1A4/H1A6
106	Temp. Offset I1	0	1	0	1	0	J2	L1A8/H1AA
107	Temp. Offset I2	0	1	0	1	0	J3	L1AC/H1AE
108	Temp. Gain I1	0	1	0	1	0	J4	L1B0/H1B2
109	Temp. Gain I2	0	1	0	1	0	J5	L1B4/H1B6
110	Temp. Sim.	0	1	0	1	0	J6	L1B8/H1BA
111	Temp. Sim. Value	870	1412	1140	4	0	J7	L1BC/H1BE
112	Reserved	0	10000	1000	5	0	J8	L1C0/H1C2
113	Reserved	0	10000	1000	5	0	J9	L1C4/H1C6

13. Dimensions

14. Technical Specifications

Technical specificati	ons:	
Connections:	Connection type:	Screw terminal, 1,5 mm ² / AWG 16
Power supply:	Input voltage:	18 30 VDC
	Protection circuit:	Reverse polarity protection
	Ripple:	\leq 10 %
	Consumption:	approx. 50 mA (bei 24 V, unloaded)
DMS supply:	Output voltage:	3-10 VDC
	Output current:	max. 50 mA
DMS inputs:	Number of inputs:	2 with readback (DM222)
		1 with readback (DM221)
	Configuration:	voltage
	Sensitivity:	+/- 5mV, +/-10mV, +/-20mV, +/-40mV, +/-80mV
	Resolution:	16 Bit
	Accuracy:	+/- 0.01% / 10K
Analog outputs:	Number of outputs:	2 (DM222)
		1 (DM221)
	Voltage:	+/- 10V (external load max. 5k0hm)
	Current:	0/4mA20mA (burden max. 270 Ohm)
	Resolution:	16 Bit
	Accuracy:	+/- 0.01% / 10K
	Reaction time:	Depending on Sampling Time und Filter
Control inputs:	Number of inputs:	4
	Format:	HTL, PNP (Low 0 4 V, High 10 30 V)
	Frequency:	max. 1 kHz
	Reaction Time:	1 ms
	Load:	max. 3mA bei 24VDC
Control outputs:	Number of outputs:	4
	Format / level:	HTL: 17 29 V (depending on supply voltage)
	Output current:	max. 30 mA, High Side Driver
USB:	Version:	USB 2.0 Mini Type B
RS-422:	Version:	2-wire RS-422
	Protocol:	LECOM, MODBUS
Housing:	Material:	Plastic
	Mounting:	35 mm top hat rail (according to EN 60715)
	Dimensions:	34 x 140 x 118 mm
	(B x H x T)	
	Protection class:	IP20
	Weight:	approx. 100 g
Ambient	Operation:	0 °C +60 °C (not condensing)
		$-25 \ ^{\circ}C \ \dots \ +70 \ ^{\circ}C \ (not condensing)$
temperature: Failure rate:	Storage:	
	MTBF in years:	59,9 (DM222)
		66.5 (DM221)
Conform:+ 0		(continuous operation at 60 °C / 140°C)
Conformity & standards:	EMC 2014/30/EU:	EN 61326-1: 2013 for industrial location
		EN 55011: 2016 + A1: 2017 + A11: 2020 Class A
	RoHS (II) 2011/65/EU	
	RoHS (III) 2015/863:	EN IEC 63000: 2018